AP Calculus AB

Unit 6 – Area and Average Value

Approximating Area Using Riemann Sums

Approximate areas "under the curve" (between the curve and the x-axis) using four subintervals for left, right and midpoint rectangles.

- 1. $f(x) = x^2$ on [0,2]
 - a) Left Rectangular Approximation
 - b) Right Rectangular Approximation
 - c) Midpoint Rectangular Approximation

Approximate areas "under the curve" (between the curve and x-axis) using the indicated Riemann Sum.

- 2. $f(x) = x^3$ on [0,2]
 - a) Find a Left Rectangular Approximation using four subintervals.
 - b) Is the approximation found in part (a) an overestimate or underestimate? Explain how you know in terms of the increasing or decreasing behavior of the graph.
- 3. $f(x) = 1 + \cos x$ on $[0, \pi]$
 - a) Find a Right Rectangular Approximation using four subintervals.
 - b) Is the approximation found in part (a) an overestimate or underestimate? Explain how you know in terms of the increasing or decreasing behavior of the graph.
- 4. $f(x) = \sqrt{x}$ on [0, 4]
 - a) Find a Right Rectangular Approximation using four subintervals.
 - b) Is the approximation found in part (a) an overestimate or underestimate? Explain how you know in terms of the increasing or decreasing behavior of the graph.
- 5. $f(x) = (x-1)^2$ on [0,2]
 - a) Find a Midpoint Rectangular Approximation using four subintervals.
- 6. If $f(x) = (x^2 2x 1)^{\frac{2}{3}}$, then f'(0) =

1	Approximate the area under $f(x) = (x-1)^2$ on $[0,4]$ using a) 4 rectangles whose height is given using the left endpoint b) 4 rectangles whose height is given using the right endpoint c) 4 rectangles whose height is given using the midpoint d) 4 trapezoids
2	 Approximate the area under f(x) = x² +1 on [0,4] using a) 4 rectangles whose height is given using the left endpoint b) 4 rectangles whose height is given using the right endpoint c) 4 rectangles whose height is given using the midpoint d) 4 trapezoids
3	Approximate the area under $f(x) = (x+1)^2$ on $[0,4]$ using: a) 4 rectangles whose height is the left-hand endpoint b) 4 rectangles whose height is the right-hand endpoint c) 4 rectangles whose height is the midpoint of each subinterval d) 4 trapezoids
4	If $f(x) = \begin{cases} 2x & \text{for } x \le 1 \\ 3x^2 - 1 & \text{for } x > 1 \end{cases}$, then find $\int_0^2 f(x) dx$ (Hint: split into two integrals)
5	$\lim_{x \to 4} \frac{x^3 - 4x^2 - x + 4}{x - 4}$
6	A function <i>f</i> that is continuous for all real numbers <i>x</i> has $f(3) = -1$ and $f(7) = 1$. If $f(x) = 0$ for exactly one value of <i>x</i> , then which of the following could be <i>x</i> ? (A) -1 (B) 0 (C) 1 (D) 4 (E) 9
7	If $f(x) = \tan^2(8-2x)$, then $f'(1) =$

1. a) 6	2. a) 18	3. a) 30	4. 7
b) 14	b) 34	b) 54	
c) 9	c) 25	c) 41	
d) 10	d) 26	d) 42	
exact: 28/3	exact: 76/3	avaat: 124	
		exact: $\frac{1}{3}$	
5. 15	6. D	7. $-4\tan 6\sec^2 6$	

Riemann Sums - Tables

1. Consider the continuous function f(x) such that f(x) > 0 for [0,1]. Selected values of f(x) are given in the table below. Use the table of values to approximate the area under f(x) using the Riemann Sum indicated.

x	0	0.25	0.5	0.75	1.0
f(x)	1.0	0.8	1.3	1.1	1.6

- a) Trapezoidal Approximation using 4 subintervals
- b) Right Rectangular Approximation using 4 subintervals
- c) Midpoint Rectangular Approximation using 2 subintervals
- 2. If a chart of values for the differentiable function f(x) =

x	0	4	16	17	20
f(x)	8	4	6	3	6

- a) Find a trapezoidal approximation for the area under f(x) on [0, 20] using four subintervals.
- b) Find a right Riemann sum approximation for the area under f(x) on [0, 20] using four subintervals.
- 3. f(x) is a differentiable function that is increasing for all x. Selected values of f(x) are given in the table below.

x	0	2	4	6	8	10
f(x)	12.5	13.4	13.9	14.3	14.6	14.8

- a) Use a Left Rectangular Riemann sum to approximate the area under f(x) on the interval [0,10] using 5 subintervals of equal width. Is this approximation an underestimate or overestimate? Explain
- b) Approximate f'(5). Show the work that leads to your answer.
- c) Find the average rate of change of f(x) on the interval [0,10].
- d) Evaluate $\int_{0}^{10} f'(x) dx$
- 4. R(t) is a differentiable function that is concave up for all t. Selected values of R(t) are given in the table below.

t	0	3	5	9	11
R(t)	20	18	12	15	19

- a) Use a trapezoidal sum to approximate the area under f(x) on the interval [0,10] using 4 subintervals. Is this approximation an underestimate or overestimate? Explain
- b) Approximate R'(4). Show the work that leads to your answer.
- c) Find the average rate of change of R(t) on the interval [0,11].

d) Evaluate
$$\int_0^{11} (3+R'(t)) dt$$

Problems #1 – 4: Find the area under the graph of f(x) from *a* to *b*. Graphing Calculator NOT permitted.

1. $f(x) = x + 1; a = 0, b = 3$	2. $f(x) = 4 - x; a = -1, b = 2$
3. $f(x) = 4 - x^2; a = -2, b = 2$	4. $f(x) = 4x - x^2; a = 0, b = 4$

Problems #5 – 8: Find the area under the graph of f(x) from *a* to *b*. Graphing Calculator is permitted.

5. $f(x) = \cos x; a = -\frac{\pi}{2}, b = \frac{\pi}{2}$	6. $f(x) = \sin x; a = \frac{\pi}{6}, b = \frac{\pi}{3}$
7. $f(x) = e^{2x}; a = 0, b = 1$	8. $f(x) = e^x; a = -1, b = 1$

Graph the region stated and then find the area of the bounded region.

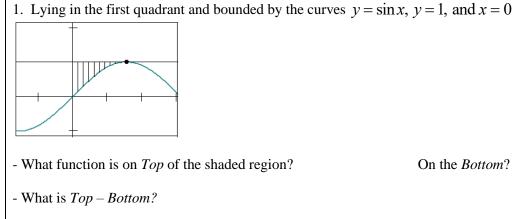
9. Bounded by the curve $y = \sqrt{x}$ and the lines x = 4 and y = 0 (What is a? b?)

Express the limit as a definite integral. You do not need to evaluate the integral.

10. $\lim_{n \to \infty} \sum_{k=1}^{n} x_k^2 \Delta x$, [0,2]	11. $\lim_{n \to \infty} \sum_{k=1}^{n} (x_k^2 - 3x_k) \Delta x$, [-7,5]	12. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{x_k} \Delta x$, [1,4]

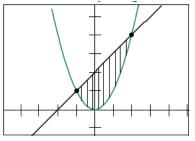
Use areas to evaluate each integral. Draw a sketch and shade in the appropriate regions.

13. Evaluate the integral: $\int_{-2}^{1} 5 dx$	14. Evaluate the integral: $\int_{3}^{7} (-20) dx$	15. Evaluate the integral: $\int_0^4 3\theta d\theta$
16. $\int_{-2}^{4} \left(\frac{1}{2}x+3\right) dx$	17. $\int_{\frac{1}{2}}^{\frac{3}{2}} (-2x+4) dx$	18. $\int_{-3}^{3} \sqrt{9 - x^2} dx$


Answers:

1. $\frac{15}{2}$	2. $\frac{21}{2}$	3. $\frac{32}{3}$	4. $\frac{32}{3}$
5. 2	6. $\frac{\sqrt{3}-1}{2}$	7. $\frac{e^2-1}{2}$	8. $\frac{e^2 - 1}{e}$
9. $a = 0; b = 4$ $\frac{16}{3}$	$10. \int_0^2 x^2 dx$	11. $\int_{-7}^{5} (x^2 - 3x) dx$	$12. \int_{1}^{4} \frac{1}{x} dx$
13. 15	1480	15.24	16. 21
17. 2	18. $\frac{9\pi}{2}$		

These problems are a little trickier because the region bounded does not involve the x-axis.


For these problems, you must:

- Graph the given functions to find the enclosed region that you will find the area of _
- Write down: *Top function Bottom function* (in terms of x only) -
- Find the values for *a* and *b* (A little Algebra) _
- **Integrate to find area:** $\left| \text{Area} = \int_{a}^{b} (Top Bottom) dx \right|$

- What is *a*? b?
- Write the appropriate integral and find the area.

2. Bounded by the parabola $y = x^2$ and the line y = x + 2

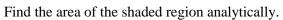

- What function is on *Top* of the shaded region?
- What is *Top Bottom*?
- What is *a*? b?

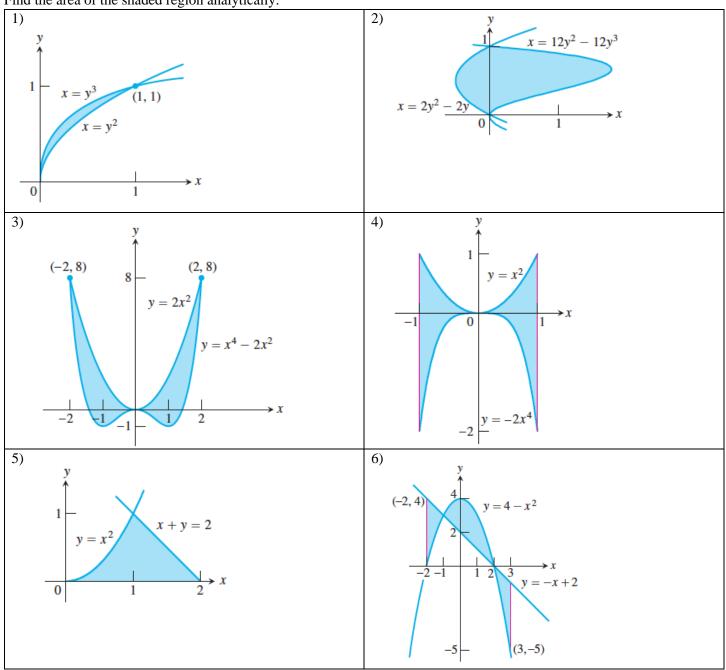
- Write the appropriate integral and find the area.

On the *Bottom*?

$\begin{bmatrix} 3 \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ x \end{bmatrix}$	3) $y = 4 - x$ on $[0, 6]$ 4	4) $y = \cos x$ on $[0, \pi]$
--	------------------------------	-------------------------------

Find the area of the shaded region analytically




Find the area of the regions enclosed by the graphs of the curves. (Hint: find *a* and *b*)

) $y = x^2 - 2$ and $y = 2$	10) $y = 7 - 2x^2$ and $y = x^2 + 4$
-----------------------------	--------------------------------------

Answers:

3) 10	4) 2	5) $\frac{\sqrt{2}}{2}$	6) $\frac{22}{15}$
7) 5/6	8) 16	9) $10\frac{2}{3}$	10) 4

7) Find the area of the region(s) enclosed by the graphs of $x - y^2 = 0$ and $x + 2y^2 = 3$.

8)	Which of the follow	ving gives the area of th	e regi	on between the	graphs of $y =$	x^2 and $y = -x$ from $x = 0$ to $x = 3$?
А	2	B 9/2	С	13/2	D 13	E 27/2

Answers:

1) 1/12	2) 4/3	3) 128/15	4) 22/15	5) 5/6
6) 49/6	7) 4	8)		

1.	Graph the region bounded by $y^2 = 4x$ and $y = 2x - 4$. Find the area
2.	Graph the region bounded by $y = 2 - x^2$ and $y = x - 4$ Find the area.
3.	Graph and find the area under the curve of $y = 2x + 1$ on $[0, 2]$.
4.	Find the average value of $f(x) = 5x^4 + 3x^2$ on the interval $-1 \le x \le 2$.
5.	Find the average value of $f(x) = \sin x$ on the interval $[0, \pi]$.
6.	Find the average value of $f(x) = \frac{1}{x}$ on the interval [e, 2e].
7.	Find the average value of $y = 3x^2 + 2x$ on the interval $[-1, 2]$
8.	Find the average value of $y = \frac{1}{1+x^2}$ on the interval [0, 1].

Answers

1. 9	2. $\frac{125}{6}$	3. 6	4. 14
5. $\frac{2}{\pi}$	6. $\frac{\ln 2}{e}$	7. 4	8. $\frac{\pi}{4}$

1.	Find the average value of $f(x) = \sin x$ on the interval $\left[0, \frac{\pi}{4}\right]$.				
2.	Approximate $\int_{0}^{4} (x^2 + 2) dx$ using 4 subintervals by:				
	 a) Left-endpoint rectangles b) Right-endpoint rectangles c) Trapezoids d) Midpoint rectangles e) find the exact value of the integral 				
3.	Find the area between the following curves: $y = \sqrt[3]{x}$ and $y = x$.				
4.	Calculate the area between the parabolas $y = 25 - x^2$ and $y = x^2 - 25$.				
5.	Find the value of k such that the following function is continuous for all real numbers. $f(x) = \begin{cases} kx-1, & x < 2\\ kx^2, & x \ge 2 \end{cases}$				
6.	Find the area of the region enclosed by the graphs of $y = x^2$ and $y = 2x + 3$.				
7.	Find the area between the curve $y = \sin 3x$ and the x-axis from $x = 0$ to $x = \frac{\pi}{3}$.				
8.	Write, but do not evaluate, the integral expression that can be used to find the area between the curves of $x + 2 = y^2$ and $y = x$.				
9.	For what value of c is $f(x) = \begin{cases} 3x^2 + 2, & x \ge -1 \\ -cx + 5, & x < -1 \end{cases}$ continuous?				
10.	Find the average value of $y = \sec^2 x$ on $\left[0, \frac{\pi}{4}\right]$.				

Answers

Allowers				
$\boxed{1\cdot\left(-\frac{\sqrt{2}}{2}+1\right)\frac{4}{\pi}}$	$\frac{2. 22; 38; 30; 29;}{\frac{88}{3}}$	3. $\frac{1}{2}$	4. $\frac{1000}{3}$	5. $-\frac{1}{2}$
6. $\frac{32}{3}$	7. $\frac{2}{3}$	8. $\int_{-1}^{2} \left[y - (y^2 - 2) \right] dy$	9. 0	10. $\frac{4}{\pi}$